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Abstract

We study Spin(9)-structures on 16-dimensional Riemannian manifolds and characterize the ge-
ometric types admitting a connection with totally skew-symmetric torsion.
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1. Introduction

The basic model in type II string theory is a 6-tuple(Mn, g,∇, T,Φ,Ψ) consisting of a
Riemannian metricg, a metric connection∇ with totally skew-symmetric torsion formT ,
a dilation functionΦ and a spinor fieldΨ . If the dilation function is constant, the string
equations can be written in the following form (see[6,11,13,15,16]):

Ric∇ = 0, δg(T) = 0, ∇Ψ = 0, T · Ψ = 0.

Therefore, an interesting problem is the investigation of metric connections with totally
skew-symmetric torsion. In[6] we proved that several non-integrable geometric structures
(almost contact metric structures, almost complex structures, G2-structures) admit a unique
connection∇ preserving it with totally skew-symmetric torsion. Moreover, we computed
the corresponding torsion formT and we studied the integrability condition for∇-parallel
spinors as well as the Ricci tensor Ric∇ . In particular, we constructed seven-dimensional so-
lutions of the string equations related to non-integrable G2-structures. The five-dimensional
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case and its link with contact geometry was investigated in more details in the paper[7].
Similar results concerning eight-dimensional manifolds with a Spin(7)-structure are con-
tained in the paper[12], the hyperKähler case was investigated in the papers[2,14,17].
Homogeneous models and the relation to Kostant’s cubic Dirac operators were discussed in
[1]. The aim of this note is to work out the case of 16-dimensional Riemannian manifolds
with a non-integrable Spin(9)-structure. Gray[10] has pointed out that this special geom-
etry may occur as a geometry with a weak holonomy group. Only recently we once again
revisited the special Spin(9)-geometries in dimension 16 and, in particular, we proved that
there are four basic classes (see[4]). Here we will study the problem which of these classes
admit a connection∇ with totally skew-symmetric torsion.

2. The geometry of Spin(9)-structures

The geometric types of Spin(9)-structures on 16-dimensional oriented Riemannian man-
ifolds were investigated in the paper[4]. We summarize the basic facts defining this special
geometry. Let us consider the 16-dimensional oriented Euclidean spaceR

16. This space
is the real spin representation of the group Spin(9) and, therefore, there exist nine linear
operatorsIα : R

16 → R
16 such that the following relations hold:

I2
α = Id, I∗

α = Iα, Iα · Iβ + Iβ · Iα = 0 (α �= β), Tr(Iα) = 0.

The subgroup Spin(9) ⊂ SO(16) can be defined as the group of all automorphisms ofR
16

preserving, under conjugation, the nine-dimensional subspaceR
9 := Lin{I1, . . . , I9} ⊂

End(R16):

Spin(9) := {g ∈ SO(R16) : g · R
9 · g−1 = R

9}.
The decomposition of the Lie algebraso(16) = so(9) ⊕m is explicitly given by

so(9) := Lin{Iα · Iβ : α < β} = Λ2(R9),

m := Lin{Iα · Iβ · Iγ : α < β < γ} = Λ3(R9).

The operatorsIα · Iβ andIα · Iβ · Iγ are skew-symmetric and, consequently, they define two
systems of 2-formsωαβ andσαβγ .

Let (M16, g) be an oriented, 16-dimensional Riemannian manifold. A Spin(9)-structure
is a nine-dimensional subbundleV 9 ⊂ End(TM16) of endomorphisms which is locally gen-
erated by sectionsIα satisfying the algebraic relations described before. Denote byF(M16)

the frame bundle of the oriented Riemannian manifold. Equivalently, a Spin(9)-structure
is a reductionR ⊂ F(M16) of the principal fiber bundle to the subgroup Spin(9). The
Levi–Civita connection is a 1-form onF(M16) with values in the Lie algebraso(16):

Z : T(F(M16)) → so(16).

We restrict the Levi–Civita connection to a fixed Spin(9)-structureR and decompose it with
respect to the decomposition of the Lie algebraso(16):

Z|T(R) := Z∗ ⊕ Γ.
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Then,Z∗ is a connection in the principal Spin(9)-bundleR andΓ is a tensorial 1-form of
type Ad, i.e., a 1-form onM16 with values in the associated bundle

R×Spin(9) m = R×Spin(9) Λ
3(R9) = Λ3(V 9).

The Spin(9)-representationR16 ⊗ m = R
16 ⊗ Λ3(R9) splits into four irreducible compo-

nents:

R
16 ⊗m = R

16 ⊕ P1(R
9) ⊕ P2(R

9) ⊕ P3(R
9)

and, therefore, we obtain a similar decomposition of the bundleΛ1(M16) ⊗ Λ3(V 9). The
representationP1(R

9) has dimension 128. It is the restriction of the half spin representation
∆−

16 of Spin(16) to the subgroup Spin(9). The dimensions of the irreducible representations
P2(R

9) andP3(R
9) are 432 and 768, respectively.

The decomposition of the sectionΓ yields the classification of all geometric types of
Spin(9)-structures. In particular, there are four basic classes (see[4]). We remark that the
sumP1 ⊕ P2 is isomorphic to the bundle of 3-forms onM16:

Λ3(M16) = P1(V
9) ⊕ P2(V

9).

In order to fix the normalization, let us describe the embeddingsΛi(M16) → Λ1(M16) ⊗
Λ3(V 9), i = 1,3, by explicit formulas. Ifµ1 ∈ Λ1(M16) is a (co-)vector, then the 1-form
onM16 with values in the bundleΛ3(V 9) is given by

µ1 �→ 1

8

9∑

α<β<γ

IαIβIγ(µ
1) ⊗ Iα · Iβ · Iγ .

Similarly, if µ3 ∈ Λ3(M16) is a 3-form, we define

µ3 �→ 1

8

9∑

α<β<γ

(σαβγ |µ3) ⊗ Iα · Iβ · Iγ ,

whereσαβγ |µ3 denotes the inner product of the 2-formsσαβγ by µ3.

3. Spin(9)-connections with totally skew-symmetric torsion

We introduce the following equivariant maps:

Φ : R
16 ⊗ spin(9) → R

16 ⊗ S2(R16),

Φ(Σ)(X, Y,Z) := g(Σ(Z)(X), Y) + g(Σ(Y)(X), Z),

Ψ : R
16 ⊗m→ R

16 ⊗ S2(R16),

Ψ(Γ)(X, Y,Z) := g(Γ(Y)(X), Z) + g(Γ(Z)(X), Y).

It is well known (see[6]) that a geometric Spin(9)-structure admits a connection∇ with
totally skew-symmetric torsion if and only ifΨ(Γ) is contained in the image of the homo-
morphismΦ. The representationR16 ⊗ spin(9) splits into

R
16 ⊗ spin(9) = R

16 ⊕ P1(R
9) ⊕ P2(R

9).
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Consequently, if a Spin(9)-structure admits a connection∇ with totally skew-symmetric
torsion, then theP3-part of the formΓ must vanish. We split the Spin(9)-representation
R

16 ⊗ S2(R16) into irreducible components. Since the symmetric linear mapsIα are trace-
less, the representationR9 is contained inS2

0(R
16) and we obtain the decomposition (see

[4])

R
16 ⊗ S2(R16) = R

16 ⊕ R
16 ⊗ (R9 ⊕ D126) = 2 · R

16 ⊕ P1(R
9) ⊕ R

16 ⊗ D126,

whereD126 := Λ4(R9) is the unique irreducible representation of Spin(9) in dimension
126. Denote byD672 the unique irreducible Spin(9)-representation of dimension 672. Its
highest weight is the 4-tuple(3/2,3/2,3/2,3/2).

Lemma 3.1. The Spin(9)-representation R
16 ⊗ S2(R16) splits into the irreducible

components

R
16 ⊗ S2(R16) = 3 · R

16 ⊕ 2 · P1(R
9) ⊕ P2(R

9) ⊕ P3(R
9) ⊕ D672.

Proof. SinceR
16 ⊗ m contains the representationsP2(R

9), P3(R
9) andΨ is nontrivial,

the tensor productR16 ⊗ D126 contains the two representations, too. Moreover, the high-
est weights ofR16 andD126 are(1/2,1/2,1/2,1/2) and(1,1,1,1), respectively. Then
the tensor productR16 ⊗ D126 contains the representationD672 of the highest weight
(3/2,3/2,3/2,3/2) (see[9, p. 425]). Consequently, we obtain

R
16 ⊗ D126 = P2(R

9) ⊕ P3(R
9) ⊕ D672 ⊕ S,

where the dimension of the rest equals dim(S) = 144. The representationS is not an
SO(9)-representation. The list of small-dimensional Spin(9)-representations yields thatS =
R

16 ⊕ P1(R
9), the final result. The decomposition ofR

16 ⊗ D126 can be computed by a
suitable computer program, too. �

Lemma 3.2. For any two vectors X, Y ∈ R
16 the following identity holds:

9∑

α<β

ωαβ(X, Y) · ωαβ +
9∑

α<β<γ

σαβγ(X, Y) · σαβγ = 8 · X ∧ Y.

Proof. The 2-formsωαβ andσαβγ constitute a basis of the spaceΛ2(R16) of all 2-forms
in 16 variables. Therefore, the identity is simply the decomposition of the 2-formX ∧
Y with respect to this basis. Remark that the length of the basic formsωαβ and σαβγ

equals 2· √
2. �

Theorem 3.1. A Spin(9)-structure on a 16-dimensional Riemannian manifold M16 admits
a connection ∇ with totally skew-symmetric torsion if and only if the (R16 ⊕ P3)-part of
the form Γ vanishes. In this case Γ is a usual 3-form on the manifold M16, the connection
∇ is unique and its torsion form T is given by the formula T = −2 · Γ .
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Proof. For a fixed vectorΓ ∈ R
16 the tensorΨ(Γ)(X, Y, Y) is given by the formula

Ψ(Γ)(X, Y, Y) = 1

4

9∑

α<β<γ

σαβγ(Γ, Y) · σαβγ(X, Y).

Since the multiplicity ofR16 in the representationR16⊗spin(9)equals 1, any Spin(9)-equivariant
mapΣ : R

16 → R
16 ⊗ spin(9) is a multiple of

Σ(Γ) =
9∑

α<β

Iαβ(Γ) ⊗ Iαβ.

Consequently, ifΨ(Γ) is in the image ofΦ, there exists a constantc such that

9∑

α<β<γ

σαβγ(Γ, Y) · σαβγ(X, Y) = c ·
9∑

α<β

ωαβ(Γ, Y) · ωαβ(X, Y).

ForΓ = X = e16we compute the corresponding quadratic forms in the variablesy1, . . . , y16:

Ψ(e16) =
8∑

i=1

y2
i + 4 ·

15∑

j=9

y2
j , Φ(Σ(e16)) = 7 ·

8∑

i=1

y2
i + 4 ·

15∑

j=9

y2
j

a contradiction. Next consider the case thatΓ ∈ Λ3(R16) is a 3-form. ByLemma 3.2we
have

Ψ(Γ)(X, Y, Y) = 1

4

9∑

αβγ

Γ(σαβγ , Y) · σαβγ(X, Y)

= −1

4

9∑

αβ

Γ(ωαβ, Y) · ωαβ(X, Y) + 2 · Γ(X, Y, Y).

SinceΓ is a 3-form, the termΓ(X, Y, Y) vanishes. Let us introduce

Σ(Γ) := −1

8

9∑

αβ

(ωαβ |Γ) ⊗ ωαβ.

ThenΣ(Γ) belongs to the spaceR16 ⊗ spin(9) and we haveΦ(Σ(Γ)) = Ψ(Γ). Conse-
quently, in caseΓ is a 3-form onM16, there exists a unique connection∇ preserving the
Spin(9)-structure with totally skew-symmetric torsion. Its torsion formT is basically given
by the differenceΓ(X) − Σ(Γ)(X) (see[6]) and we obtain the formulaT = −2 · Γ . �

Let us characterize Spin(9)-structures of typeP1 ⊕ P2 using the Riemannian covariant
derivatives∇Iα of the symmetric endomorphisms describing the structure. For an arbitrary
2-formS we introduce the symmetric forms by the formula

Sα(Y, Z) := −S(Iα(Y), Z) + S(Y, Iα(Z)), α = 1, . . . ,9.
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The connection∇ preserves the nine-dimensional bundle of endomorphismsIα and there-
fore there exist 1-formsMαβ such that∇Iα = ∑9

β=1 Mαβ · Iβ. Since∇XY = ∇g
X + 1/2 ·

T(X, Y, ·) we obtain the following formula for the Riemannian covariant derivative of the
endomorphismsIα

∇g
XIα =

9∑

β=1

Mαβ(X) · Iβ + 1

2
· (X |T)α,

whereT is a 3-form. The latter equation characterizes Spin(9)-structures of typeP1 ⊕ P2.

4. Homogeneous Spin(9)-structures

Consider a Lie groupG, a subgroupH and suppose that the homogeneous spaceG/H

is naturally reductive of dimension 16. We fix a decomposition

g = h⊕ n, [h, n] ⊂ n, n = R
16

as well as a scalar product (,)n such that for allX, Y,Z ∈ n
([X, Y ]n, Z)n + (Y, [X,Z]n)n = 0

holds, where [X, Y ]n denotes then-part of the commutator. Moreover, suppose that the
isotropy representation leaves a Spin(9)-structure in the vector spacen invariant. Then
G/H admits a homogeneous Spin(9)-structure. Indeed, the frame bundle is an associated
bundle:

F(G/H) = G ×Ad SO(n)

andR := G → F(G/H) is a reduction to the subgroupH contained in Spin(9). The
canonical connection∇can of the reductive space preserves the Spin(9)-structure and has
totally skew-symmetric torsion:

T∇can
(X, Y, Z) = −([X, Y ]n, Z)n.

Consequently, any homogeneous Spin(9)-structure admits an affine connection with totally
skew-symmetric torsion, i.e., it is of typeP1 ⊕ P2.

Corollary 4.1. Any homogeneous Spin(9)-structure on a naturally reductive space M16 =
G/H is of type P1 ⊕ P2.

Remark 4.1. In particular, for any homogeneous Spin(9)-structure the differenceΓ be-
tween the Levi–Civita connection and the canonical connection is a 3-form. Indeed, the
Levi–Civita connection of a reductive space is given by the mapn→ End(n)

X �→ 1
2 · [X, ·]n.
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Then we obtain

Γ(X) = 1

2
· prm([X, ·]n) = 1

32

16∑

i,j=1

∑

α<β<γ

([X, ei]n, ej)n · σαβγ(ei, ej) · σαβγ .

We write the latter equation in the following form

Γ(X) = − 1

16

∑

α<β<γ

(σαβγ |T∇can
)(X) · σαβγ = −1

2
· T∇can

(X, ·, ·),

i.e.,Γ is proportional to the torsion of the canonical connection:

Γ(X)(Y, Z) = −1
2 · T∇can

(X, Y, Z).

There are homogeneous Spin(9)-structures on different reductive spaces (see[4]).

Example 4.1. The group Spin(9) acts transitively on the sphereS15, the isotropy group is
isomorphic to Spin(7) and the isotropic representation of the reductive spaceS1 × S15 =
(S1 × Spin(9))/Spin(7) is contained in Spin(9).

Example 4.3. The spaceS1 × S1 × (SO(8)/G2) admits a homogeneous Spin(9)-structure.

Example 4.3. The space SU(5)/SU(3) admits a homogeneous Spin(9)-structure.

5. G-connections with totally skew-symmetric torsion

The class of Spin(9)-structures corresponding to the representationR
16 ⊂ R

16 ⊗ m
is related with conformal changes of the metric. Indeed, if(M16, g, V 9) is a Riemannian
manifold with a fixed Spin(9)-structureV 9 ⊂ End(TM16) andg∗ = e2f · g is a confor-
mal change of the metric, then the triple(M16, g∗, V 9) is a Riemannian manifold with a
Spin(9)-structure, too. The fact that the 16-dimensional class of Spin(9)-structures corre-
sponding toR16 is not admissible inTheorem 3.1means that the existence of a connec-
tion with totally skew-symmetric torsion and preserving a Spin(9)-structure is not invari-
ant under conformal transformations of the metric. From this point of view the behavior
of Spin(9)-structures is different from the behavior of G2-structures, Spin(7)-structures,
quaternionic Kähler structures or contact structures (see[7,8,12,14]). We will explain this
effect in a more general context.

Let G ⊂ SO(n) be a closed subgroup of the orthogonal group and decompose the Lie
algebra

so(n) = g⊕m.
A G-structure of a Riemannian manifoldsMn is a reductionR ⊂ F(Mn) of the frame
bundle to the subgroup G. The Levi–Civita connection is a 1-formZ onF(Mn) with values
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in the Lie algebraso(n). We restrict the Levi–Civita connection to a fixed G-structureR
and decompose it with respect to the decomposition of the Lie algebraso(n):

Z|T(R) := Z∗ ⊕ Γ.

Then,Z∗ is a connection in the principal G-bundleR andΓ is a tensorial 1-form of type Ad,
i.e., a 1-form onMn with values in the associated bundleR ×G m. The G-representation
R

n ⊗ m splits into irreducible components and the corresponding decomposition ofΓ

characterizes the different non-integrable G-structures. We introduce the equivariant maps:

Φ :Rn ⊗ g→R
n ⊗ S2(Rn), Φ(Σ)(X, Y,Z) :=g(Σ(Z)(X), Y)+g(Σ(Y)(X), Z),

Ψ :Rn ⊗m→R
n ⊗ S2(Rn), Ψ(Γ)(X, Y,Z) :=g(Γ(Y)(X), Z)+g(Γ(Z)(X), Y).

It is well known (see[6]) that a geometric G-structure admits a connection∇ with totally
skew-symmetric torsion if and only ifΨ(Γ) is contained in the image of the homomorphism
Φ. There is an equivalent formulation of this condition. Indeed, let us introduce the maps

Θ1 : Λ3(Rn) → R
n ⊗m, Θ2 : Λ3(Rn) → R

n ⊗ g
given by the formulas

Θ1(T) :=
∑

i

(σi |T) ⊗ σi, Θ2(T) :=
∑

j

(µj |T) ⊗ µj,

whereσi is an orthonormal basis inm andµj is an orthonormal basis ing. Observe that the
kernel of the map(Ψ ⊕ Φ) : R

n ⊗ so(n) → R
n ⊗ S2(Rn) coincides with the image of the

map(Θ1 ⊕Θ2) : Λ3(Rn) → R
n ⊗ so(n). Consequently, for any elementΓ ∈ R

n ⊗m, the
conditionΨ(Γ) ∈ Image(Φ) is equivalent toΓ ∈ Image(Θ1).

Theorem 5.1. A G-structure R ⊂ F(Mn) of a Riemannian manifold admits a connection
∇ with totally skew-symmetric torsion if and only if the 1-form Γ belongs to the image of
Θ1, Γ = Θ1(T). In this case the 3-form (−2 · T) is the torsion form of the connection.

Consequently, only such geometric types (i.e., irreducible components ofR
n ⊗ m) are

admissible which occur in the G-decomposition ofΛ3(Rn). This explains the different
behavior of G-structures with respect to conformal transformations.

Example 5.1. In case of G= Spin(9) we have

R
16 ⊗m = R

16 ⊕ Λ3(R16) ⊕ P3(R
9)

and theR16-component is not contained inΛ3(R16) = P1(R
9)⊕P2(R

9), i.e., a conformal
change of a Spin(9)-structure does not preserve the property that the structure admits a
connection with totally skew-symmetric torsion.

Example 5.2. In case of a seven-dimensional G2-structure the situation is different. Indeed,
we decompose the G2-representation (see[6])

Λ3(R7) = R
1 ⊕ R

7 ⊕ Λ3
27, R

7 ⊗m = R
1 ⊕ R

7 ⊕ Λ2
14 ⊕ Λ3

27
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and, consequently, a conformal change of a G2-structure preserves the property that the
structure admits a connection with totally skew-symmetric torsion.

Example 5.3. Let us consider Spin(7)-structures on eight-dimensional Riemannian mani-
folds. The subgroup Spin(7) ⊂ SO(8) is the real Spin(7)-representation∆7 = R

8. The com-
plementm = R

7 is the standard seven-dimensional representation and the Spin(7)-structures
on an eight-dimensional Riemannian manifoldM8 correspond to the irreducible compo-
nents of the tensor product

R
8 ⊗m = R

8 ⊗ R
7 = ∆7 ⊗ R

7 = ∆7 ⊕ K,

whereK denotes the kernel of the Clifford multiplication∆7 ⊗R
7 → ∆7. It is well known

thatK is an irreducible Spin-representation. Therefore, there are only two basic types of
Spin(7)-structures (see[3]). On the other hand, the mapΛ3(R8) → R

8 ⊗m is injective and
the Spin(7)-representationΛ3(R8) = Λ3(∆7) splits again into the irreducible components

Λ3(∆7) = ∆7 ⊕ K,

i.e., Λ3(R8) → R
8 ⊗ m is an isomorphism.Theorem 5.1yields immediately that any

Spin(7)-structure on an eight-dimensional Riemannian manifold admits a connection with
totally skew-symmetric torsion (see[12]). We remark thatn = 8 is the smallest dimension
where this effect can occur. Indeed, let G⊂ SO(n) be a subgroup of dimension g and
suppose that any G-structure admits a connection with totally skew-symmetric torsion, i.e.,
the mapΛ3(Rn) → R

n ⊗ m is surjective. On the other side, the isotropy representation
G → SO(m) of the compact Riemannian manifold SO(n)/G is injective. Consequently,
we obtain the inequalities

1
3(n

2 − 1) ≤ g ≤ 1
2(n

2 − 3n + 2).

The minimal pair satisfying this condition isn = 8, g= 21. Using not only the dimension
of the G-representation one can exclude other dimensions, for examplen = 9. For a further
discussion see (see[5]).
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