Spin(9)-structures and connections with totally skew-symmetric torsion ${ }^{\text {T }}$

Thomas Friedrich
Institut für Mathematik, Humboldt-Universität zu Berlin, Ziegelstrasse 13 A, Sitz: WBC Adlershof, D-10099 Berlin, Germany

Received 4 March 2002

Abstract

We study Spin(9)-structures on 16-dimensional Riemannian manifolds and characterize the geometric types admitting a connection with totally skew-symmetric torsion. © 2002 Elsevier Science B.V. All rights reserved.

MSC: Primary 53C25; Secondary 81T30
Keywords: Special Riemannian manifolds; $\operatorname{Spin}(9)$-structures; String theory

1. Introduction

The basic model in type II string theory is a 6-tuple ($M^{n}, g, \nabla, T, \Phi, \Psi$) consisting of a Riemannian metric g, a metric connection ∇ with totally skew-symmetric torsion form T, a dilation function Φ and a spinor field Ψ. If the dilation function is constant, the string equations can be written in the following form (see $[6,11,13,15,16]$):

$$
\operatorname{Ric}^{\nabla}=0, \quad \delta^{g}(T)=0, \quad \nabla \Psi=0, \quad T \cdot \Psi=0
$$

Therefore, an interesting problem is the investigation of metric connections with totally skew-symmetric torsion. In [6] we proved that several non-integrable geometric structures (almost contact metric structures, almost complex structures, G_{2}-structures) admit a unique connection ∇ preserving it with totally skew-symmetric torsion. Moreover, we computed the corresponding torsion form T and we studied the integrability condition for ∇-parallel spinors as well as the Ricci tensor Ric ${ }^{\nabla}$. In particular, we constructed seven-dimensional solutions of the string equations related to non-integrable G_{2}-structures. The five-dimensional

[^0]case and its link with contact geometry was investigated in more details in the paper [7]. Similar results concerning eight-dimensional manifolds with a $\operatorname{Spin}(7)$-structure are contained in the paper [12], the hyperKähler case was investigated in the papers [2,14,17]. Homogeneous models and the relation to Kostant's cubic Dirac operators were discussed in [1]. The aim of this note is to work out the case of 16 -dimensional Riemannian manifolds with a non-integrable $\operatorname{Spin}(9)$-structure. Gray [10] has pointed out that this special geometry may occur as a geometry with a weak holonomy group. Only recently we once again revisited the special $\operatorname{Spin}(9)$-geometries in dimension 16 and, in particular, we proved that there are four basic classes (see [4]). Here we will study the problem which of these classes admit a connection ∇ with totally skew-symmetric torsion.

2. The geometry of $\operatorname{Spin}(9)$-structures

The geometric types of $\operatorname{Spin}(9)$-structures on 16-dimensional oriented Riemannian manifolds were investigated in the paper [4]. We summarize the basic facts defining this special geometry. Let us consider the 16 -dimensional oriented Euclidean space \mathbb{R}^{16}. This space is the real spin representation of the group $\operatorname{Spin}(9)$ and, therefore, there exist nine linear operators $I_{\alpha}: \mathbb{R}^{16} \rightarrow \mathbb{R}^{16}$ such that the following relations hold:

$$
I_{\alpha}^{2}=\mathrm{Id}, \quad I_{\alpha}^{*}=I_{\alpha}, \quad I_{\alpha} \cdot I_{\beta}+I_{\beta} \cdot I_{\alpha}=0 \quad(\alpha \neq \beta), \quad \operatorname{Tr}\left(I_{\alpha}\right)=0
$$

The subgroup $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ can be defined as the group of all automorphisms of \mathbb{R}^{16} preserving, under conjugation, the nine-dimensional subspace $\mathbb{R}^{9}:=\operatorname{Lin}\left\{I_{1}, \ldots, I_{9}\right\} \subset$ $\operatorname{End}\left(\mathbb{R}^{16}\right)$:

$$
\operatorname{Spin}(9):=\left\{g \in \operatorname{SO}\left(\mathbb{R}^{16}\right): g \cdot \mathbb{R}^{9} \cdot g^{-1}=\mathbb{R}^{9}\right\} .
$$

The decomposition of the Lie algebra $\mathfrak{s o}(16)=\mathfrak{s o}(9) \oplus \mathfrak{m}$ is explicitly given by

$$
\begin{aligned}
& \mathfrak{s o}(9):=\operatorname{Lin}\left\{I_{\alpha} \cdot I_{\beta}: \alpha<\beta\right\}=\Lambda^{2}\left(\mathbb{R}^{9}\right) \\
& \mathfrak{m}:=\operatorname{Lin}\left\{I_{\alpha} \cdot I_{\beta} \cdot I_{\gamma}: \alpha<\beta<\gamma\right\}=\Lambda^{3}\left(\mathbb{R}^{9}\right)
\end{aligned}
$$

The operators $I_{\alpha} \cdot I_{\beta}$ and $I_{\alpha} \cdot I_{\beta} \cdot I_{\gamma}$ are skew-symmetric and, consequently, they define two systems of 2-forms $\omega_{\alpha \beta}$ and $\sigma_{\alpha \beta \gamma}$.

Let $\left(M^{16}, g\right)$ be an oriented, 16-dimensional Riemannian manifold. A Spin(9)-structure is a nine-dimensional subbundle $V^{9} \subset \operatorname{End}\left(T M^{16}\right)$ of endomorphisms which is locally generated by sections I_{α} satisfying the algebraic relations described before. Denote by $\mathcal{F}\left(M^{16}\right)$ the frame bundle of the oriented Riemannian manifold. Equivalently, a Spin(9)-structure is a reduction $\mathcal{R} \subset \mathcal{F}\left(M^{16}\right)$ of the principal fiber bundle to the subgroup $\operatorname{Spin}(9)$. The Levi-Civita connection is a 1 -form on $\mathcal{F}\left(M^{16}\right)$ with values in the Lie algebra $\mathfrak{s o}(16)$:

$$
Z: T\left(\mathcal{F}\left(M^{16}\right)\right) \rightarrow \mathfrak{s o}(16)
$$

We restrict the Levi-Civita connection to a fixed $\operatorname{Spin}(9)$-structure \mathcal{R} and decompose it with respect to the decomposition of the Lie algebra $\mathfrak{s o}(16)$:

$$
\left.Z\right|_{T(\mathcal{R})}:=Z^{*} \oplus \Gamma
$$

Then, Z^{*} is a connection in the principal $\operatorname{Spin}(9)$-bundle \mathcal{R} and Γ is a tensorial 1-form of type Ad, i.e., a 1 -form on M^{16} with values in the associated bundle

$$
\mathcal{R} \times \operatorname{Spin}(9) \mathfrak{m}=\mathcal{R} \times \operatorname{Spin}(9) \Lambda^{3}\left(\mathbb{R}^{9}\right)=\Lambda^{3}\left(V^{9}\right)
$$

The $\operatorname{Spin}(9)$-representation $\mathbb{R}^{16} \otimes \mathfrak{m}=\mathbb{R}^{16} \otimes \Lambda^{3}\left(\mathbb{R}^{9}\right)$ splits into four irreducible components:

$$
\mathbb{R}^{16} \otimes \mathfrak{m}=\mathbb{R}^{16} \oplus \mathcal{P}_{1}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{2}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{3}\left(\mathbb{R}^{9}\right)
$$

and, therefore, we obtain a similar decomposition of the bundle $\Lambda^{1}\left(M^{16}\right) \otimes \Lambda^{3}\left(V^{9}\right)$. The representation $\mathcal{P}_{1}\left(\mathbb{R}^{9}\right)$ has dimension 128 . It is the restriction of the half spin representation Δ_{16}^{-}of $\operatorname{Spin}(16)$ to the subgroup $\operatorname{Spin}(9)$. The dimensions of the irreducible representations $\mathcal{P}_{2}\left(\mathbb{R}^{9}\right)$ and $\mathcal{P}_{3}\left(\mathbb{R}^{9}\right)$ are 432 and 768 , respectively.

The decomposition of the section Γ yields the classification of all geometric types of $\operatorname{Spin}(9)$-structures. In particular, there are four basic classes (see [4]). We remark that the sum $\mathcal{P}_{1} \oplus \mathcal{P}_{2}$ is isomorphic to the bundle of 3-forms on M^{16} :

$$
\Lambda^{3}\left(M^{16}\right)=\mathcal{P}_{1}\left(V^{9}\right) \oplus \mathcal{P}_{2}\left(V^{9}\right)
$$

In order to fix the normalization, let us describe the embeddings $\Lambda^{i}\left(M^{16}\right) \rightarrow \Lambda^{1}\left(M^{16}\right) \otimes$ $\Lambda^{3}\left(V^{9}\right), i=1,3$, by explicit formulas. If $\mu^{1} \in \Lambda^{1}\left(M^{16}\right)$ is a (co-)vector, then the 1 -form on M^{16} with values in the bundle $\Lambda^{3}\left(V^{9}\right)$ is given by

$$
\mu^{1} \mapsto \frac{1}{8} \sum_{\alpha<\beta<\gamma}^{9} I_{\alpha} I_{\beta} I_{\gamma}\left(\mu^{1}\right) \otimes I_{\alpha} \cdot I_{\beta} \cdot I_{\gamma}
$$

Similarly, if $\mu^{3} \in \Lambda^{3}\left(M^{16}\right)$ is a 3-form, we define

$$
\mu^{3} \mapsto \frac{1}{8} \sum_{\alpha<\beta<\gamma}^{9}\left(\sigma_{\alpha \beta \gamma} \dashv \mu^{3}\right) \otimes I_{\alpha} \cdot I_{\beta} \cdot I_{\gamma},
$$

where $\sigma_{\alpha \beta \gamma} \dashv \mu^{3}$ denotes the inner product of the 2 -forms $\sigma_{\alpha \beta \gamma}$ by μ^{3}.

3. Spin(9)-connections with totally skew-symmetric torsion

We introduce the following equivariant maps:

$$
\begin{aligned}
& \Phi: \mathbb{R}^{16} \otimes \mathfrak{s p i n}(9) \rightarrow \mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right) \\
& \Phi(\Sigma)(X, Y, Z):=g(\Sigma(Z)(X), Y)+g(\Sigma(Y)(X), Z) \\
& \Psi: \mathbb{R}^{16} \otimes \mathfrak{m} \rightarrow \mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right) \\
& \Psi(\Gamma)(X, Y, Z):=g(\Gamma(Y)(X), Z)+g(\Gamma(Z)(X), Y)
\end{aligned}
$$

It is well known (see [6]) that a geometric $\operatorname{Spin}(9)$-structure admits a connection ∇ with totally skew-symmetric torsion if and only if $\Psi(\Gamma)$ is contained in the image of the homomorphism Φ. The representation $\mathbb{R}^{16} \otimes \mathfrak{s p i n}(9)$ splits into

$$
\mathbb{R}^{16} \otimes \mathfrak{s p i n}(9)=\mathbb{R}^{16} \oplus \mathcal{P}_{1}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{2}\left(\mathbb{R}^{9}\right)
$$

Consequently, if a $\operatorname{Spin}(9)$-structure admits a connection ∇ with totally skew-symmetric torsion, then the \mathcal{P}_{3}-part of the form Γ must vanish. We split the $\operatorname{Spin}(9)$-representation $\mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right)$ into irreducible components. Since the symmetric linear maps I_{α} are traceless, the representation \mathbb{R}^{9} is contained in $S_{0}^{2}\left(\mathbb{R}^{16}\right)$ and we obtain the decomposition (see [4])

$$
\mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right)=\mathbb{R}^{16} \oplus \mathbb{R}^{16} \otimes\left(\mathbb{R}^{9} \oplus D^{126}\right)=2 \cdot \mathbb{R}^{16} \oplus \mathcal{P}_{1}\left(\mathbb{R}^{9}\right) \oplus \mathbb{R}^{16} \otimes D^{126}
$$

where $D^{126}:=\Lambda^{4}\left(\mathbb{R}^{9}\right)$ is the unique irreducible representation of $\operatorname{Spin}(9)$ in dimension 126. Denote by D^{672} the unique irreducible $\operatorname{Spin}(9)$-representation of dimension 672. Its highest weight is the 4 -tuple ($3 / 2,3 / 2,3 / 2,3 / 2$).

Lemma 3.1. The $\operatorname{Spin}(9)$-representation $\mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right)$ splits into the irreducible components

$$
\mathbb{R}^{16} \otimes S^{2}\left(\mathbb{R}^{16}\right)=3 \cdot \mathbb{R}^{16} \oplus 2 \cdot \mathcal{P}_{1}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{2}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{3}\left(\mathbb{R}^{9}\right) \oplus D^{672}
$$

Proof. Since $\mathbb{R}^{16} \otimes \mathfrak{m}$ contains the representations $\mathcal{P}_{2}\left(\mathbb{R}^{9}\right), \mathcal{P}_{3}\left(\mathbb{R}^{9}\right)$ and Ψ is nontrivial, the tensor product $\mathbb{R}^{16} \otimes D^{126}$ contains the two representations, too. Moreover, the highest weights of \mathbb{R}^{16} and D^{126} are $(1 / 2,1 / 2,1 / 2,1 / 2)$ and $(1,1,1,1)$, respectively. Then the tensor product $\mathbb{R}^{16} \otimes D^{126}$ contains the representation D^{672} of the highest weight (3/2, 3/2, 3/2, 3/2) (see [9, p. 425]). Consequently, we obtain

$$
\mathbb{R}^{16} \otimes D^{126}=\mathcal{P}_{2}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{3}\left(\mathbb{R}^{9}\right) \oplus D^{672} \oplus S
$$

where the dimension of the rest equals $\operatorname{dim}(S)=144$. The representation S is not an $\mathrm{SO}(9)$-representation. The list of small-dimensional $\operatorname{Spin}(9)$-representations yields that $S=$ $\mathbb{R}^{16} \oplus \mathcal{P}_{1}\left(\mathbb{R}^{9}\right)$, the final result. The decomposition of $\mathbb{R}^{16} \otimes D^{126}$ can be computed by a suitable computer program, too.

Lemma 3.2. For any two vectors $X, Y \in \mathbb{R}^{16}$ the following identity holds:

$$
\sum_{\alpha<\beta}^{9} \omega_{\alpha \beta}(X, Y) \cdot \omega_{\alpha \beta}+\sum_{\alpha<\beta<\gamma}^{9} \sigma_{\alpha \beta \gamma}(X, Y) \cdot \sigma_{\alpha \beta \gamma}=8 \cdot X \wedge Y
$$

Proof. The 2 -forms $\omega_{\alpha \beta}$ and $\sigma_{\alpha \beta \gamma}$ constitute a basis of the space $\Lambda^{2}\left(\mathbb{R}^{16}\right)$ of all 2-forms in 16 variables. Therefore, the identity is simply the decomposition of the 2-form $X \wedge$ Y with respect to this basis. Remark that the length of the basic forms $\omega_{\alpha \beta}$ and $\sigma_{\alpha \beta \gamma}$ equals $2 \cdot \sqrt{2}$.

Theorem 3.1. A Spin(9)-structure on a 16 -dimensional Riemannian manifold M^{16} admits a connection ∇ with totally skew-symmetric torsion if and only if the $\left(\mathbb{R}^{16} \oplus \mathcal{P}_{3}\right)$-part of the form Γ vanishes. In this case Γ is a usual 3-form on the manifold M^{16}, the connection ∇ is unique and its torsion form T is given by the formula $T=-2 \cdot \Gamma$.

Proof. For a fixed vector $\Gamma \in \mathbb{R}^{16}$ the tensor $\Psi(\Gamma)(X, Y, Y)$ is given by the formula

$$
\Psi(\Gamma)(X, Y, Y)=\frac{1}{4} \sum_{\alpha<\beta<\gamma}^{9} \sigma_{\alpha \beta \gamma}(\Gamma, Y) \cdot \sigma_{\alpha \beta \gamma}(X, Y) .
$$

Since the multiplicity of \mathbb{R}^{16} in the representation $\mathbb{R}^{16} \otimes \mathfrak{s p i n}(9)$ equals 1 , any $\operatorname{Spin}(9)$-equivariant $\operatorname{map} \Sigma: \mathbb{R}^{16} \rightarrow \mathbb{R}^{16} \otimes \mathfrak{s p i n}(9)$ is a multiple of

$$
\Sigma(\Gamma)=\sum_{\alpha<\beta}^{9} I_{\alpha \beta}(\Gamma) \otimes I_{\alpha \beta} .
$$

Consequently, if $\Psi(\Gamma)$ is in the image of Φ, there exists a constant c such that

$$
\sum_{\alpha<\beta<\gamma}^{9} \sigma_{\alpha \beta \gamma}(\Gamma, Y) \cdot \sigma_{\alpha \beta \gamma}(X, Y)=c \cdot \sum_{\alpha<\beta}^{9} \omega_{\alpha \beta}(\Gamma, Y) \cdot \omega_{\alpha \beta}(X, Y) .
$$

For $\Gamma=X=e_{16}$ we compute the corresponding quadratic forms in the variables y_{1}, \ldots, y_{16} :

$$
\Psi\left(e_{16}\right)=\sum_{i=1}^{8} y_{i}^{2}+4 \cdot \sum_{j=9}^{15} y_{j}^{2}, \quad \Phi\left(\Sigma\left(e_{16}\right)\right)=7 \cdot \sum_{i=1}^{8} y_{i}^{2}+4 \cdot \sum_{j=9}^{15} y_{j}^{2}
$$

a contradiction. Next consider the case that $\Gamma \in \Lambda^{3}\left(\mathbb{R}^{16}\right)$ is a 3 -form. By Lemma 3.2 we have

$$
\begin{aligned}
\Psi(\Gamma)(X, Y, Y) & =\frac{1}{4} \sum_{\alpha \beta \gamma}^{9} \Gamma\left(\sigma_{\alpha \beta \gamma}, Y\right) \cdot \sigma_{\alpha \beta \gamma}(X, Y) \\
& =-\frac{1}{4} \sum_{\alpha \beta}^{9} \Gamma\left(\omega_{\alpha \beta}, Y\right) \cdot \omega_{\alpha \beta}(X, Y)+2 \cdot \Gamma(X, Y, Y) .
\end{aligned}
$$

Since Γ is a 3-form, the term $\Gamma(X, Y, Y)$ vanishes. Let us introduce

$$
\Sigma(\Gamma):=-\frac{1}{8} \sum_{\alpha \beta}^{9}\left(\omega_{\alpha \beta} \dashv \Gamma\right) \otimes \omega_{\alpha \beta} .
$$

Then $\Sigma(\Gamma)$ belongs to the space $\mathbb{R}^{16} \otimes \mathfrak{s p i n}(9)$ and we have $\Phi(\Sigma(\Gamma))=\Psi(\Gamma)$. Consequently, in case Γ is a 3 -form on M^{16}, there exists a unique connection ∇ preserving the $\operatorname{Spin}(9)$-structure with totally skew-symmetric torsion. Its torsion form T is basically given by the difference $\Gamma(X)-\Sigma(\Gamma)(X)$ (see [6]) and we obtain the formula $T=-2 \cdot \Gamma$.

Let us characterize $\operatorname{Spin}(9)$-structures of type $\mathcal{P}_{1} \oplus \mathcal{P}_{2}$ using the Riemannian covariant derivatives ∇I_{α} of the symmetric endomorphisms describing the structure. For an arbitrary 2-form S we introduce the symmetric forms by the formula

$$
S_{\alpha}(Y, Z):=-S\left(I_{\alpha}(Y), Z\right)+S\left(Y, I_{\alpha}(Z)\right), \quad \alpha=1, \ldots, 9
$$

The connection ∇ preserves the nine-dimensional bundle of endomorphisms I_{α} and therefore there exist 1-forms $M_{\alpha \beta}$ such that $\nabla I_{\alpha}=\sum_{\beta=1}^{9} M_{\alpha \beta} \cdot I_{\beta}$. Since $\nabla_{X} Y=\nabla_{X}^{g}+1 / 2$. $T(X, Y, \cdot)$ we obtain the following formula for the Riemannian covariant derivative of the endomorphisms I_{α}

$$
\nabla_{X}^{g} I_{\alpha}=\sum_{\beta=1}^{9} M_{\alpha \beta}(X) \cdot I_{\beta}+\frac{1}{2} \cdot(X \dashv T)_{\alpha}
$$

where T is a 3-form. The latter equation characterizes $\operatorname{Spin}(9)$-structures of type $\mathcal{P}_{1} \oplus \mathcal{P}_{2}$.

4. Homogeneous $\operatorname{Spin}(9)$-structures

Consider a Lie group G, a subgroup H and suppose that the homogeneous space G / H is naturally reductive of dimension 16 . We fix a decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{n}, \quad[\mathfrak{h}, \mathfrak{n}] \subset \mathfrak{n}, \quad \mathfrak{n}=\mathbb{R}^{16}
$$

as well as a scalar product $(,)_{\mathfrak{n}}$ such that for all $X, Y, Z \in \mathfrak{n}$

$$
\left([X, Y]_{\mathfrak{n}}, Z\right)_{\mathfrak{n}}+\left(Y,[X, Z]_{\mathfrak{n}}\right)_{\mathfrak{n}}=0
$$

holds, where $[X, Y]_{\mathfrak{n}}$ denotes the \mathfrak{n}-part of the commutator. Moreover, suppose that the isotropy representation leaves a $\operatorname{Spin}(9)$-structure in the vector space \mathfrak{n} invariant. Then G / H admits a homogeneous $\operatorname{Spin}(9)$-structure. Indeed, the frame bundle is an associated bundle:

$$
\mathcal{F}(G / H)=G \times_{\mathrm{Ad}} \mathrm{SO}(\mathfrak{n})
$$

and $\mathcal{R}:=G \rightarrow \mathcal{F}(G / H)$ is a reduction to the subgroup H contained in $\operatorname{Spin}(9)$. The canonical connection $\nabla^{\text {can }}$ of the reductive space preserves the $\operatorname{Spin}(9)$-structure and has totally skew-symmetric torsion:

$$
T^{\nabla^{\mathrm{can}}}(X, Y, Z)=-\left([X, Y]_{\mathfrak{n}}, Z\right)_{\mathfrak{n}}
$$

Consequently, any homogeneous $\operatorname{Spin}(9)$-structure admits an affine connection with totally skew-symmetric torsion, i.e., it is of type $\mathcal{P}_{1} \oplus \mathcal{P}_{2}$.

Corollary 4.1. Any homogeneous Spin(9)-structure on a naturally reductive space $M^{16}=$ G / H is of type $\mathcal{P}_{1} \oplus \mathcal{P}_{2}$.

Remark 4.1. In particular, for any homogeneous $\operatorname{Spin}(9)$-structure the difference Γ between the Levi-Civita connection and the canonical connection is a 3 -form. Indeed, the Levi-Civita connection of a reductive space is given by the map $\mathfrak{n} \rightarrow \operatorname{End}(\mathfrak{n})$

$$
X \mapsto \frac{1}{2} \cdot[X, \cdot]_{\mathfrak{n}} .
$$

Then we obtain

$$
\Gamma(X)=\frac{1}{2} \cdot \operatorname{pr}_{\mathfrak{m}}\left([X, \cdot]_{\mathfrak{n}}\right)=\frac{1}{32} \sum_{i, j=1}^{16} \sum_{\alpha<\beta<\gamma}\left(\left[X, e_{i}\right]_{\mathfrak{n}}, e_{j}\right)_{\mathfrak{n}} \cdot \sigma_{\alpha \beta \gamma}\left(e_{i}, e_{j}\right) \cdot \sigma_{\alpha \beta \gamma}
$$

We write the latter equation in the following form

$$
\Gamma(X)=-\frac{1}{16} \sum_{\alpha<\beta<\gamma}\left(\sigma_{\alpha \beta \gamma} \nmid T^{\nabla^{\mathrm{can}}}\right)(X) \cdot \sigma_{\alpha \beta \gamma}=-\frac{1}{2} \cdot T^{\nabla^{\mathrm{can}}}(X, \cdot, \cdot),
$$

i.e., Γ is proportional to the torsion of the canonical connection:

$$
\Gamma(X)(Y, Z)=-\frac{1}{2} \cdot T^{\nabla^{\mathrm{can}}}(X, Y, Z)
$$

There are homogeneous Spin(9)-structures on different reductive spaces (see [4]).
Example 4.1. The group $\operatorname{Spin}(9)$ acts transitively on the sphere S^{15}, the isotropy group is isomorphic to $\operatorname{Spin}(7)$ and the isotropic representation of the reductive space $S^{1} \times S^{15}=$ ($\left.S^{1} \times \operatorname{Spin}(9)\right) / \operatorname{Spin}(7)$ is contained in $\operatorname{Spin}(9)$.

Example 4.3. The space $S^{1} \times S^{1} \times\left(\mathrm{SO}(8) / \mathrm{G}_{2}\right)$ admits a homogeneous $\operatorname{Spin}(9)$-structure.
Example 4.3. The space $\operatorname{SU}(5) / \mathrm{SU}(3)$ admits a homogeneous $\operatorname{Spin}(9)$-structure.

5. G-connections with totally skew-symmetric torsion

The class of $\operatorname{Spin}(9)$-structures corresponding to the representation $\mathbb{R}^{16} \subset \mathbb{R}^{16} \otimes \mathfrak{m}$ is related with conformal changes of the metric. Indeed, if (M^{16}, g, V^{9}) is a Riemannian manifold with a fixed $\operatorname{Spin}(9)$-structure $V^{9} \subset \operatorname{End}\left(T M^{16}\right)$ and $g^{*}=\mathrm{e}^{2 f} \cdot g$ is a conformal change of the metric, then the triple $\left(M^{16}, g^{*}, V^{9}\right)$ is a Riemannian manifold with a $\operatorname{Spin}(9)$-structure, too. The fact that the 16 -dimensional class of $\operatorname{Spin}(9)$-structures corresponding to \mathbb{R}^{16} is not admissible in Theorem 3.1 means that the existence of a connection with totally skew-symmetric torsion and preserving a $\operatorname{Spin}(9)$-structure is not invariant under conformal transformations of the metric. From this point of view the behavior of $\operatorname{Spin}(9)$-structures is different from the behavior of G_{2}-structures, $\operatorname{Spin}(7)$-structures, quaternionic Kähler structures or contact structures (see [7,8,12,14]). We will explain this effect in a more general context.

Let $\mathrm{G} \subset \mathrm{SO}(n)$ be a closed subgroup of the orthogonal group and decompose the Lie algebra

$$
\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{m}
$$

A G-structure of a Riemannian manifolds M^{n} is a reduction $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ of the frame bundle to the subgroup G. The Levi-Civita connection is a 1-form Z on $\mathcal{F}\left(M^{n}\right)$ with values
in the Lie algebra $\mathfrak{s o}(n)$. We restrict the Levi-Civita connection to a fixed G-structure \mathcal{R} and decompose it with respect to the decomposition of the Lie algebra $\mathfrak{s o}(n)$:

$$
\left.Z\right|_{T(\mathcal{R})}:=Z^{*} \oplus \Gamma
$$

Then, Z^{*} is a connection in the principal G-bundle \mathcal{R} and Γ is a tensorial 1-form of type Ad, i.e., a 1-form on M^{n} with values in the associated bundle $\mathcal{R} \times{ }_{\mathrm{G}} \mathfrak{m}$. The G-representation $\mathbb{R}^{n} \otimes \mathfrak{m}$ splits into irreducible components and the corresponding decomposition of Γ characterizes the different non-integrable G-structures. We introduce the equivariant maps:

$$
\begin{aligned}
& \Phi: \mathbb{R}^{n} \otimes \mathfrak{g} \rightarrow \mathbb{R}^{n} \otimes S^{2}\left(\mathbb{R}^{n}\right), \quad \Phi(\Sigma)(X, Y, Z):=g(\Sigma(Z)(X), Y)+g(\Sigma(Y)(X), Z) \\
& \Psi: \mathbb{R}^{n} \otimes \mathfrak{m} \rightarrow \mathbb{R}^{n} \otimes S^{2}\left(\mathbb{R}^{n}\right), \quad \Psi(\Gamma)(X, Y, Z):=g(\Gamma(Y)(X), Z)+g(\Gamma(Z)(X), Y)
\end{aligned}
$$

It is well known (see [6]) that a geometric G-structure admits a connection ∇ with totally skew-symmetric torsion if and only if $\Psi(\Gamma)$ is contained in the image of the homomorphism Φ. There is an equivalent formulation of this condition. Indeed, let us introduce the maps

$$
\Theta_{1}: \Lambda^{3}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \otimes \mathfrak{m}, \quad \Theta_{2}: \Lambda^{3}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \otimes \mathfrak{g}
$$

given by the formulas

$$
\Theta_{1}(T):=\sum_{i}\left(\sigma_{i} \dashv T\right) \otimes \sigma_{i}, \quad \Theta_{2}(T):=\sum_{j}\left(\mu_{j} \dashv T\right) \otimes \mu_{j},
$$

where σ_{i} is an orthonormal basis in \mathfrak{m} and μ_{j} is an orthonormal basis in \mathfrak{g}. Observe that the kernel of the map $(\Psi \oplus \Phi): \mathbb{R}^{n} \otimes \mathfrak{s o}(n) \rightarrow \mathbb{R}^{n} \otimes S^{2}\left(\mathbb{R}^{n}\right)$ coincides with the image of the $\operatorname{map}\left(\Theta_{1} \oplus \Theta_{2}\right): \Lambda^{3}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \otimes \mathfrak{s o}(n)$. Consequently, for any element $\Gamma \in \mathbb{R}^{n} \otimes \mathfrak{m}$, the condition $\Psi(\Gamma) \in \operatorname{Image}(\Phi)$ is equivalent to $\Gamma \in \operatorname{Image}\left(\Theta_{1}\right)$.

Theorem 5.1. A G-structure $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ of a Riemannian manifold admits a connection ∇ with totally skew-symmetric torsion if and only if the 1-form Γ belongs to the image of $\Theta_{1}, \Gamma=\Theta_{1}(T)$. In this case the 3-form $(-2 \cdot T)$ is the torsion form of the connection.

Consequently, only such geometric types (i.e., irreducible components of $\mathbb{R}^{n} \otimes \mathfrak{m}$) are admissible which occur in the G-decomposition of $\Lambda^{3}\left(\mathbb{R}^{n}\right)$. This explains the different behavior of G-structures with respect to conformal transformations.

Example 5.1. In case of $G=\operatorname{Spin}(9)$ we have

$$
\mathbb{R}^{16} \otimes \mathfrak{m}=\mathbb{R}^{16} \oplus \Lambda^{3}\left(\mathbb{R}^{16}\right) \oplus \mathcal{P}_{3}\left(\mathbb{R}^{9}\right)
$$

and the \mathbb{R}^{16}-component is not contained in $\Lambda^{3}\left(\mathbb{R}^{16}\right)=\mathcal{P}_{1}\left(\mathbb{R}^{9}\right) \oplus \mathcal{P}_{2}\left(\mathbb{R}^{9}\right)$, i.e., a conformal change of a $\operatorname{Spin}(9)$-structure does not preserve the property that the structure admits a connection with totally skew-symmetric torsion.

Example 5.2. In case of a seven-dimensional G_{2}-structure the situation is different. Indeed, we decompose the G_{2}-representation (see [6])

$$
\Lambda^{3}\left(\mathbb{R}^{7}\right)=\mathbb{R}^{1} \oplus \mathbb{R}^{7} \oplus \Lambda_{27}^{3}, \quad \mathbb{R}^{7} \otimes \mathfrak{m}=\mathbb{R}^{1} \oplus \mathbb{R}^{7} \oplus \Lambda_{14}^{2} \oplus \Lambda_{27}^{3}
$$

and, consequently, a conformal change of a G_{2}-structure preserves the property that the structure admits a connection with totally skew-symmetric torsion.

Example 5.3. Let us consider $\operatorname{Spin}(7)$-structures on eight-dimensional Riemannian manifolds. The subgroup $\operatorname{Spin}(7) \subset \operatorname{SO}(8)$ is the real $\operatorname{Spin}(7)$-representation $\Delta_{7}=\mathbb{R}^{8}$. The complement $\mathfrak{m}=\mathbb{R}^{7}$ is the standard seven-dimensional representation and the $\operatorname{Spin}(7)$-structures on an eight-dimensional Riemannian manifold M^{8} correspond to the irreducible components of the tensor product

$$
\mathbb{R}^{8} \otimes \mathfrak{m}=\mathbb{R}^{8} \otimes \mathbb{R}^{7}=\Delta_{7} \otimes \mathbb{R}^{7}=\Delta_{7} \oplus K
$$

where K denotes the kernel of the Clifford multiplication $\Delta_{7} \otimes \mathbb{R}^{7} \rightarrow \Delta_{7}$. It is well known that K is an irreducible Spin-representation. Therefore, there are only two basic types of $\operatorname{Spin}(7)$-structures (see [3]). On the other hand, the map $\Lambda^{3}\left(\mathbb{R}^{8}\right) \rightarrow \mathbb{R}^{8} \otimes \mathfrak{m}$ is injective and the $\operatorname{Spin}(7)$-representation $\Lambda^{3}\left(\mathbb{R}^{8}\right)=\Lambda^{3}\left(\Delta_{7}\right)$ splits again into the irreducible components

$$
\Lambda^{3}\left(\Delta_{7}\right)=\Delta_{7} \oplus K
$$

i.e., $\Lambda^{3}\left(\mathbb{R}^{8}\right) \rightarrow \mathbb{R}^{8} \otimes \mathfrak{m}$ is an isomorphism. Theorem 5.1 yields immediately that any $\operatorname{Spin}(7)$-structure on an eight-dimensional Riemannian manifold admits a connection with totally skew-symmetric torsion (see [12]). We remark that $n=8$ is the smallest dimension where this effect can occur. Indeed, let $G \subset \operatorname{SO}(n)$ be a subgroup of dimension g and suppose that any G-structure admits a connection with totally skew-symmetric torsion, i.e., the map $\Lambda^{3}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \otimes \mathfrak{m}$ is surjective. On the other side, the isotropy representation $\mathrm{G} \rightarrow \mathrm{SO}(\mathfrak{m})$ of the compact Riemannian manifold $\mathrm{SO}(n) / \mathrm{G}$ is injective. Consequently, we obtain the inequalities

$$
\frac{1}{3}\left(n^{2}-1\right) \leq \mathrm{g} \leq \frac{1}{2}\left(n^{2}-3 n+2\right)
$$

The minimal pair satisfying this condition is $n=8, \mathrm{~g}=21$. Using not only the dimension of the G-representation one can exclude other dimensions, for example $n=9$. For a further discussion see (see [5]).

References

[1] I. Agricola, Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, Commun. Math. Phys, in press.
[2] I.G. Dotti, A. Fino, HyperKähler torsion structures invariant by nilpotent Lie groups. math.dg/0112166.
[3] M. Fernandez, A classification of Riemannian manifolds with structure group Spin(7), Ann. de Mat. Pura ed Applicata CXLIII (1986) 101-122.
[4] Th. Friedrich, Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. Math. 5 (2001) 129-160.
[5] Th. Friedrich, On types of non-integrable geometries, Proc. Winter School Srni, in press. math.dg/0205149.
[6] Th. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303-336.
[7] Th. Friedrich, S. Ivanov, Almost contact manifolds and type II string equations, Crelle J., in press.
[8] Th. Friedrich, S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G_{2}-manifolds. math.dg/0112201.
[9] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, Springer, New York, 1991.
[10] A. Gray, Weak holonomy groups, Math. Z. 123 (1971) 290-300.
[11] P.S. Howe, G. Papadopoulos, Finiteness and anomalies in $(4,0)$ supersymmetric sigma models, Nucl. Phys. B 381 (1992) 360.
[12] S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7)-manifolds. math.dg/0111216.
[13] S. Ivanov, G. Papadopoulos, Vanishing theorems and string background, Class. Quant. Grav. 18 (2001) 1089-1110.
[14] S. Ivanov, I. Minchev, Quaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces. math.dg/0112157.
[15] P. Spindel, A. Sevrin, W. Troost, A. van Proeyen, Extended supersymmetric σ-models on group manifolds, Nucl. Phys. B 308 (1988) 662-698.
[16] A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253-284.
[17] M. Verbitsky, HyperKähler manifolds with torsion, supersymmetry and Hodge theory. math.ag/0112215.

[^0]: 4 Supported by the SFB 288 "Differential geometry and quantum physics" of the DFG. E-mail address: friedric@mathematik.hu-berlin.de (T. Friedrich).

