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Abstract

We study Spin(9)-structures on 16-dimensional Riemannian manifolds and characterize the ge-
ometric types admitting a connection with totally skew-symmetric torsion.
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1. Introduction

The basic model in type Il string theory is a 6-tupld”, g, V, T, @, ¥) consisting of a
Riemannian metrig, a metric connectiolv with totally skew-symmetric torsion forif,
a dilation function® and a spinor fieldV. If the dilation function is constant, the string
equations can be written in the following form (4é¢l11,13,15,16}

RicV = 0, 88(T) =0, V¢ =0, T-¥=0.

Therefore, an interesting problem is the investigation of metric connections with totally
skew-symmetric torsion. If6] we proved that several non-integrable geometric structures
(almost contact metric structures, almost complex structurest@ctures) admit a unique
connectionV preserving it with totally skew-symmetric torsion. Moreover, we computed
the corresponding torsion forf and we studied the integrability condition ferparallel
spinors as well as the Ricci tensor Ridn particular, we constructed seven-dimensional so-
lutions of the string equations related to non-integrables@uctures. The five-dimensional
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case and its link with contact geometry was investigated in more details in the [Faper
Similar results concerning eight-dimensional manifolds with a Spin(7)-structure are con-
tained in the papefl2], the hyperKahler case was investigated in the pafieist,17]
Homogeneous models and the relation to Kostant’s cubic Dirac operators were discussed in
[1]. The aim of this note is to work out the case of 16-dimensional Riemannian manifolds
with a non-integrable Spin(9)-structure. Gfd¥] has pointed out that this special geom-

etry may occur as a geometry with a weak holonomy group. Only recently we once again
revisited the special Spin(9)-geometries in dimension 16 and, in particular, we proved that
there are four basic classes ($¢. Here we will study the problem which of these classes
admit a connectioiv with totally skew-symmetric torsion.

2. Thegeometry of Spin(9)-structures

The geometric types of Spin(9)-structures on 16-dimensional oriented Riemannian man-
ifolds were investigated in the papdi. We summarize the basic facts defining this special
geometry. Let us consider the 16-dimensional oriented Euclidean §4c&his space
is the real spin representation of the group Spin(9) and, therefore, there exist nine linear
operatord, : R1® — R such that the following relations hold:

2=, I'=1I, Iy-lg+lg-Io=0 (@#p), Trly) =0.

The subgroup Spit®) ¢ SO(16) can be defined as the group of all automorphisnig 16
preserving, under conjugation, the nine-dimensional subsRéce= Lin{ly, ..., I} C
End(R16):

Spin9) = {g € SORY®) : g-RY. g7 = RI}.
The decomposition of the Lie algebsa(16) = s0(9) ® m is explicitly given by

50(9) := Lin{ly - Ig : « < B} = A%(RY),
mo=Lin{ly - Ig-1,:a < p <y} = A3RO).

The operatorg,, - Ig andl, - Ig - I, are skew-symmetric and, consequently, they define two
systems of 2-forma,g andogg,,-

Let (M18, g) be an oriented, 16-dimensional Riemannian manifold. A Spin(9)-structure
is a nine-dimensional subbundt€ ¢ End(TM*8) of endomorphisms which is locally gen-
erated by sections, satisfying the algebraic relations described before. Denof&( 5)
the frame bundle of the oriented Riemannian manifold. Equivalently, a Spin(9)-structure
is a reductionR ¢ F(M') of the principal fiber bundle to the subgroup Spin(9). The
Levi—Civita connection is a 1-form af(M16) with values in the Lie algebrso(16):

7 T(F(M*®) — s0(16).

We restrict the Levi—Civita connection to a fixed Spin(9)-strucii@nd decompose it with
respect to the decomposition of the Lie algekrél6):

ZIrr) = VARSI N
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Then,Z* is a connection in the principal Spin(9)-bundeand " is a tensorial 1-form of
type Ad, i.e., a 1-form o116 with values in the associated bundle

R Xsping) M = R Xsping) A3RY) = A3(V9).

The Spin(9)-representatidd!® @ m = R16 @ A3(R?) splits into four irreducible compo-
nents:

R¥@m = R® @ P1(R% @ P.(R®%) ® P3(RY)

and, therefore, we obtain a similar decomposition of the burdig/1%) @ A3(v9). The
representatiof; (R%) has dimension 128. Itis the restriction of the half spin representation
Al 0f Spin(16) to the subgroup Spin(9). The dimensions of the irreducible representations
Po(R%) andP3(R?) are 432 and 768, respectively.

The decomposition of the sectidn yields the classification of all geometric types of
Spin(9)-structures. In particular, there are four basic classe§4ped&Ve remark that the
sum?Py & P> is isomorphic to the bundle of 3-forms an®:

A3(MP0) = Py(VO) @ Pa(V).
In order to fix the normalization, let us describe the embedditigas1) — Al(M1%) @

A3(V9),i =1, 3, by explicit formulas. Ifut € AL(M19) is a (co-)vector, then the 1-form
on M8 with values in the bundlet3(V?9) is given by

9
1
ut 5 D Lipl,(uhH @I - Ig- 1.
a<f<y
Similarly, if 42 € A3(M15) is a 3-form, we define
12
W 2 Y Cupy i) ® LI 1y,
a<p<y

whereo,gs, | 13 denotes the inner product of the 2-formg, by 2.

3. Spin(9)-connectionswith totally skew-symmetric torsion

We introduce the following equivariant maps:
@ R @ spin(9) — R @ $2(R),
D)X, Y, Z) = g(X(2)(X),Y) + g(X(N(X), 2),
¥ RY@m - R°® 2R,
Y(N(X, Y, Z) == g(I(N)(X), Z) + g(I(Z)(X), Y).

It is well known (se€6]) that a geometric Spin(9)-structure admits a connectionith
totally skew-symmetric torsion if and only #(I") is contained in the image of the homo-
morphisma. The representatioR® ® spin(9) splits into

R® @ spin(9) = R & P1(R®) & Po(RY).
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Consequently, if a Spin(9)-structure admits a connecYionith totally skew-symmetric
torsion, then théPz-part of the formI” must vanish. We split the Spin(9)-representation
R @ $2(R16) into irreducible components. Since the symmetric linear nigase trace-
less, the representatid@®? is contained ins3(R®) and we obtain the decomposition (see

[4])
R g $2(R16) = R16 g R @ (R® @ D126) — 2. R16 @ Py(RY) & R1® & D26,

where D126 := A%(R?) is the unique irreducible representation of Spin(9) in dimension
126. Denote byD®72 the unique irreducible Spin(9)-representation of dimension 672. Its
highest weight is the 4-tupk8/2, 3/2, 3/2, 3/2).

Lemma 3.1. The Spin(9)-representation R® @ $?(R%) splits into the irreducible
components

R @ S*(R') =3- R ®2- P1(R®) @ P2(R°) ® P3(R®) @ D2

Proof. SinceR® ® m contains the representatio®s(R?), P3(R®) and¥ is nontrivial,

the tensor produdk'® @ D126 contains the two representations, too. Moreover, the high-
est weights ofR1® and D26 are (1/2, 1/2, 1/2, 1/2) and (1, 1, 1, 1), respectively. Then
the tensor producR1® @ D126 contains the representatiab®’2 of the highest weight
(3/2,3/2,3/2, 3/2) (se€]9, p. 425). Consequently, we obtain

R'® @ D' = Pr(R%) @ P3(R%) @ D*?® S,

where the dimension of the rest equals @iin= 144. The representatiofi is not an
SO(9)-representation. The list of small-dimensional Spin(9)-representations yielfisthat
R @ P;(R®), the final result. The decomposition B® ® D26 can be computed by a
suitable computer program, too. a

Lemma 3.2. For any two vectors X, Y € RS the following identity holds:

9 9
D wup(X.Y) wupt+ Y Oupy(X.Y) - 0up, =8 X A Y.
a<p a<fB<y

Proof. The 2-formsw,s anda,g, constitute a basis of the spadé(R16) of all 2-forms
in 16 variables. Therefore, the identity is simply the decomposition of the 2-f6rm
Y with respect to this basis. Remark that the length of the basic fexggsand oug,

equals 2 /2. 0

Theorem 3.1. A Spin(9)-structure on a 16-dimensional Riemannian manifold M16 admits
a connection V with totally skew-symmetric torsion if and only if the (R6 & P3)-part of
the form I vanishes. In this case I'" is a usual 3-form on the manifold M1, the connection
V isunique and itstorsion form T isgiven by theformula T = —2- I".
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Proof. For a fixed vector™ € R16 the tensor/(IN (X, Y, Y) is given by the formula

1 9
WD Y.V =7 D7 Gapy (1Y) 0upy (X, ).

a<fB<y

Since the multiplicity oRR18in the representatidR'®@spin(9) equals 1, any Spin(9)-equivariant
map¥ : R1® — R16® spin(9) is a multiple of

9
(D) =" Ip(D @ Lup.

a<pf
Consequently, ifs(I) is in the image ofp, there exists a constansuch that

9 9
Y Oupy (DY) Oy (X, V) = Y wap(IY) - wap(X, V).

a<f<y a<f

ForI" = X = ejgWe compute the corresponding quadratic forms inthe variahles. , y16:

8 15 8 15
Wew) =Y y2+4-Y 12 D(Z(ew) =7 3P +4-) ¥
i=1 j=9

i=1 j=9

a contradiction. Next consider the case thag A3(R%) is a 3-form. ByLemma 3.2we
have

1 9
U)X Y.Y) = 73 Tougy. V) - 0oy (X, ¥)

afy

9
1
=-2 Y Mwep. V) - wup(X. Y) + 2 (X, Y. V).
of

Sincerl is a 3-form, the ternT(X, Y, Y) vanishes. Let us introduce
1.9
o =g Xﬂj(waﬁJ ) ® wap.
(07

Then X(I) belongs to the spade!® @ spin(9) and we haveb(X(I)) = ¥(I). Conse-
quently, in casd™ is a 3-form onM8, there exists a unique connecti®hpreserving the
Spin(9)-structure with totally skew-symmetric torsion. Its torsion fd@rims basically given
by the differencd(X) — X(IN(X) (see[6]) and we obtain the formuld = -2. 1. O

Let us characterize Spin(9)-structures of typed P» using the Riemannian covariant
derivativesV I, of the symmetric endomorphisms describing the structure. For an arbitrary
2-form S we introduce the symmetric forms by the formula

Sa(Y, Z) = =SUa(V), 2) + S(Y, 1u(2)), a=1,....9
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The connectiorV preserves the nine-dimensional bundle of endomorphisrasd there-
fore there exist 1-formaes such thatVl, = Y33 Mg - Ig. SinceVyY = V§ +1/2-
T(X, Y, -) we obtain the following formula for the Riemannian covariant derivative of the
endomorphismg,,

9
1
Vils = ;Maﬂ(X) g+ 5 - (XD,

whereT is a 3-form. The latter equation characterizes Spin(9)-structures oftygePs.

4, Homogeneous Spin(9)-structures

Consider a Lie grouss, a subgroupd and suppose that the homogeneous sjiacd
is naturally reductive of dimension 16. We fix a decomposition

g=hon, [h,n]cn n=RH
as well as a scalar product{3uch that for allX, ¥, Z e n
([X’ Y]l’l! Z)n + (K [X, Z]n)n =0

holds, where X, Y], denotes thar-part of the commutator. Moreover, suppose that the
isotropy representation leaves a Spin(9)-structure in the vector spacariant. Then

G/H admits a homogeneous Spin(9)-structure. Indeed, the frame bundle is an associated
bundle:

F(G/H) = G xad SOn)

andR := G — F(G/H) is a reduction to the subgrouli contained in Spin(9). The
canonical connectioW®@" of the reductive space preserves the Spin(9)-structure and has
totally skew-symmetric torsion:

Vcan

T (XY, 2) = —([X. Y]n, Dn.

Consequently, any homogeneous Spin(9)-structure admits an affine connection with totally
skew-symmetric torsion, i.e., it is of typ@; & P-».

Corollary 4.1. Any homogeneous Spin(9)-structure on a naturally reductive space M16 =
G/H isof type P1 ® Po.

Remark 4.1. In particular, for any homogeneous Spin(9)-structure the differdnde-
tween the Levi—Civita connection and the canonical connection is a 3-form. Indeed, the
Levi—Civita connection of a reductive space is given by the map End(n)

X 30X, ]n.



T. Friedrich/ Journal of Geometry and Physics 47 (2003) 197-206 203

Then we obtain

16

1 1
N0 =5 Pr((X, Jn) = o5 i;q;yqx, eiln, €)n - Oupy(ei, €)) - Oupy.

We write the latter equation in the following form

1 Vcan l vcan
nx) = —Eagy(%ﬁyﬂ Y(X) - oupy = =5 T (X, ),

i.e., I" is proportional to the torsion of the canonical connection:

XY, 2) = -3 - TV7(X, ¥, 2).
There are homogeneous Spin(9)-structures on different reductive spackf)see

Example 4.1. The group Spin(9) acts transitively on the sph&tg the isotropy group is
isomorphic to Spin(7) and the isotropic representation of the reductive spaces™® =
(ST x Spin(9))/Spin(7) is contained in Spin(9).

Example4.3. The spaces? x S1 x (SO(8)/G,) admits a homogeneous Spin(9)-structure.

Example4.3. The space S(6)/SU(3) admits a homogeneous Spin(9)-structure.

5. G-connections with totally skew-symmetric torsion

The class of Spin(9)-structures corresponding to the representatrc R1® @ m
is related with conformal changes of the metric. IndeedMf®, g, V) is a Riemannian
manifold with a fixed Spin(9)-structuré® c End(TM16) andg* = €/ . g is a confor-
mal change of the metric, then the trigl#/16, g*, V°) is a Riemannian manifold with a
Spin(9)-structure, too. The fact that the 16-dimensional class of Spin(9)-structures corre-
sponding toR*® is not admissible iMheorem 3.Imeans that the existence of a connec-
tion with totally skew-symmetric torsion and preserving a Spin(9)-structure is not invari-
ant under conformal transformations of the metric. From this point of view the behavior
of Spin(9)-structures is different from the behavior of-&ructures, Spin(7)-structures,
guaternionic Kéhler structures or contact structures [(&12,14]. We will explain this
effect in a more general context.

Let G ¢ SO(n) be a closed subgroup of the orthogonal group and decompose the Lie
algebra

so(n) =g dm.

A G-structure of a Riemannian manifoldg” is a reductionR c F(M™) of the frame
bundle to the subgroup G. The Levi—Civita connection is a 1-fgrom F(M") with values
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in the Lie algebrao(n). We restrict the Levi—Civita connection to a fixed G-struct®re
and decompose it with respect to the decomposition of the Lie algebrx

Z|T(R) =7 I

Then,Z* is a connection in the principal G-bundReand!" is a tensorial 1-form of type Ad,

i.e., a 1-form onM" with values in the associated bund®ex s m. The G-representation

R" ® m splits into irreducible components and the corresponding decompositiéh of
characterizes the different non-integrable G-structures. We introduce the equivariant maps:

O R"®g—R'® PR, D(D)(X,Y,Z):=g(Z(Z)(X), N+g(Z(V)(X), Z),
VR @m—R' @ SAR"), W(D(X,Y, Z):=g(I(Y)(X), Z)+g(I(Z)(X), V).

It is well known (seg6]) that a geometric G-structure admits a connectowith totally

skew-symmetric torsion if and only #(I) is contained in the image of the homomorphism

@. There is an equivalent formulation of this condition. Indeed, let us introduce the maps
O1: A3R") > R" ®@m, @ AR > R'"®g

given by the formulas

OUD =) (@ dD®oi, BN =) (D@ u,,
i i

whereg; is an orthonormal basis in andy ; is an orthonormal basis in Observe that the
kernel of the mag¥ @ @) : R” ® so(n) — R” @ S2(R") coincides with the image of the
map(@1 ® 07) : A3(R") - R" ® so(n). Consequently, for any elemefte R” ® m, the
condition¥(IN € Imagg®) is equivalent ta” € Imagg®1).

Theorem 5.1. A G-structure R ¢ F(M") of a Riemannian manifold admits a connection
V with totally skew-symmetric torsion if and only if the 1-form I" belongs to the image of
®1, I' = ©1(D). Inthis case the 3-form (—2 - 7) isthe torsion form of the connection.

Consequently, only such geometric types (i.e., irreducible componeiit @fm) are
admissible which occur in the G-decomposition 4#(R"). This explains the different
behavior of G-structures with respect to conformal transformations.

Example5.1. In case of G= Spin(9) we have
R @ m =R @ A3R") @ P3(RY)

and theR16-component is not contained it®(R16) = P1(R?) @ P»(R?), i.e., a conformal
change of a Spin(9)-structure does not preserve the property that the structure admits a
connection with totally skew-symmetric torsion.

Exampleb5.2. In case of a seven-dimensiongl-Structure the situation is different. Indeed,
we decompose the &epresentation (s€6])

ABRY=R'oR'®43;,, R'em=R'oR ®4a%0 43
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and, consequently, a conformal change of asBucture preserves the property that the
structure admits a connection with totally skew-symmetric torsion.

Example5.3. Let us consider Spin(7)-structures on eight-dimensional Riemannian mani-
folds. The subgroup Spiif) ¢ SO(8) is the real Spin(7)-representatian = R8. The com-
plemenin = R’ isthe standard seven-dimensional representation and the Spin(7)-structures
on an eight-dimensional Riemannian manifai® correspond to the irreducible compo-
nents of the tensor product

REam=REQR = A7®R’ = A7 ® K,

whereK denotes the kernel of the Clifford multiplicatiaty ® R’ — A-. Itis well known
that K is an irreducible Spin-representation. Therefore, there are only two basic types of
Spin(7)-structures (sg8]). On the other hand, the map?(R®) — R®®@m is injective and

the Spin(7)-representation®(R®) = A3(A7) splits again into the irreducible components

A3(A7) = A7 K,

i.e., A3(R® — R® ® m is an isomorphismTheorem 5.lyields immediately that any
Spin(7)-structure on an eight-dimensional Riemannian manifold admits a connection with
totally skew-symmetric torsion (s¢&2]). We remark that = 8 is the smallest dimension
where this effect can occur. Indeed, let& SO(n) be a subgroup of dimension g and
suppose that any G-structure admits a connection with totally skew-symmetric torsion, i.e.,
the mapA3(R") — R" ® m is surjective. On the other side, the isotropy representation
G — SQ(m) of the compact Riemannian manifold §0/G is injective. Consequently,

we obtain the inequalities

-1 <g=<3m®-3n+2).

The minimal pair satisfying this condition is= 8, g= 21. Using not only the dimension
of the G-representation one can exclude other dimensions, for exampl For a further
discussion see (s€8]).
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